Application of nanoporous alumina surfaces as substrates for pore-suspended lipid membranes

Anodization is a common technology to passivate aluminum surfaces and the appearance of randomly distributed pores in the surface is well known and used to stain the surface in a second step. In 1995 Masuda et al. reported a two step anodization which leads to a regular distribution of the pores due to a self-organization process [1]. This induced a rising interest in these pores as they offer structures in the nanometer scale which can be used in applications for magnetic storage [2], solar cells [3], carbon nanotubes [4], catalysts [5] and metal nanowires [6]. Their use as substrates for artificial lipid membranes [7] will be outlined within this report.

Introduction

In ambient conditions aluminum surfaces are naturally covered by a thin alumina (Al2O3) layer. The thickness of this layer is about several tens of nanometers. With the anodization technique the layer thickness can be increased to some microns. In that way the surfaces are more resistant against salt water, slightly acidic solutions or scratches. Anodization is commonly used for corrosion protection of aluminum and there are international standards (ISO 7599, DIN 17611, BS 3987, etc.) regulating quality and thickness of anodized surfaces.

Normally, anodization is done by applying an electrical current to a part of aluminum in an acidic electrolyte as depicted in Figure 1. Anodization leads to an alumina layer with a porous surface. As this is objectionable for corrosion protection, the surface is being welled after the anodization, e.g. by immersing the part in boiling water.

Creating ordered nanoporous surfaces

In the last decades intensive studies led to new insights to the principles underlying the anodization processes and helped refining the methods to prepare porous surfaces. The appearance of pores during anodization depends on the oxidation rate of aluminum and the field enhanced oxide dissolution rate at the oxide/electrolyte interface [8]. Both depend on the applied electrical field strength and the chosen electrolyte, which have to be adjusted properly to create homogeneous pores.

Fig. 1 Scheme of the setup for the anodization of aluminum. The aluminum part is contacted to the anode of an electrical circuit in an acidic electrolyte while a counterelectrode in the electrolyte is contacted to the cathode.

As depicted in Figure 2, the application of an electric field first leads to the development of a compact barrier layer of alumina (A). Small topographic differences within this layer...
cause inhomogeneities in the applied electrical field as indicated by arrows (B). This increases the dissolution rate of the oxide locally. Small pores are deepened further, while the electrical field and the dissolution rate in the alumina between two pores decreases (C). Deep pores continuously “grow” during the ongoing anodization (D) with a speed of 1 – 2 μm/h.

The interpore distances can be adjusted in the range of 50 - 420 nm with the applied potential [9]. Anodization at low potentials (30 – 60 V) in 0.3 M oxalic acid at 2 °C leads to pore distances of 50 – 150 nm. Potentials of 100 - 160 V can be applied using 10 wt% phosphoric acid as electrolyte at 3 °C and lead to interpore distances of 300 - 420 nm. As a rule of thumb, the pore diameter can be estimated to be 30% of the interpore distance [10]. It can be increased if the surface is chemically etched after the anodization.

At the beginning of the anodization process, the pores are randomly distributed on the surface. During their growth into the bulk material they arrange in a hexagonal pattern due to a process of self organisation. This can be utilized to create surfaces with ordered pores: The initially created oxide layer is removed (e.g. in an aqueous solution of 6 wt% phosphoric acid and 1.8 wt% Cr(VI)oxide) and a second anodization process is carried out using the pre-structured aluminum surface as a template [11].

Imaging Nanoporous Alumina Surfaces

To characterize the porous surfaces Scanning Electron Microscopy (SEM) or Atomic Force Microscopy (AFM) are used. Figure 3 shows ordered nanoporous alumina surfaces prepared by the described twofold anodization with a potential of 40 V in oxalic acid and subsequent chemical etching in oxalic acid for 3 h at 30 °C.

There are areas with different orientations of perfectly ordered hexagonal lattices. Point defects in the lattices appear as bright humps in the AFM image (B). Details in the structure of the pore rims are visible in the zoomed AFM image (C) of an 0.5 x 0.5 μm² region. Even small irregularities in the surface structure of the pore rims are visible in the AFM image.

Nanoporous alumina surfaces as substrates for pore-suspending lipid membranes

As an example for the application of ordered nanopores their use as substrates for pore-suspending lipid membranes [7] will be outlined. In this application the porous alumina surface was negatively functionalized to allow fusion of positively charged lipid vesicles onto the porous substrate. A scetch of the vesicle fusion on the functionalized surface is shown in Figure 4.

The lipid of choice was N,N-dimethyl-N,N dioctadecylammonium bromide (DODAB) as it binds electrostatically on 3-mercaptopropionic acid at pH 8.6. The existance of pore-suspending membranes could be verified as the membranes showed elastic deformation during subsequent AFM-scans with different loading forces.
This leads to the conclusion that most but not all pores are spanned by a lipid membrane, which can be reversibly deformed by the AFM tip. More details can be found in [7].

Literature

